Antioxidant Treatment Limits Neuroinflammation in Experimental Glaucoma
نویسندگان
چکیده
PURPOSE Besides primary neurotoxicity, oxidative stress may compromise the glial immune regulation and shift the immune homeostasis toward neurodegenerative inflammation in glaucoma. We tested this hypothesis through the analysis of neuroinflammatory and neurodegenerative outcomes in mouse glaucoma using two experimental paradigms of decreased or increased oxidative stress. METHODS The first experimental paradigm tested the effects of Tempol, a multifunctional antioxidant, given through osmotic mini-pumps for drug delivery by constant infusion. Following a 6-week treatment period after microbead/viscoelastic injection-induced ocular hypertension, retina and optic nerve samples were analyzed for markers of oxidative stress and cytokine profiles using specific bioassays. We also analyzed a redox-sensitive transcriptional regulator of neuroinflammation, namely NF-κB. The second paradigm included a similar analysis of the effects of overloaded oxidative stress on retina and optic nerve inflammation in mice knockout for a major antioxidant enzyme (SOD1(-/-)). RESULTS Increased antioxidant capacity and decreased protein carbonyls and HNE adducts with Tempol treatment verified the drug delivery and biological function. Among a range of cytokines measured, proinflammatory cytokines, including IL-1, IL-2, IFN-γ, and TNF-α, exhibited more than 2-fold decreased titers in Tempol-treated ocular hypertensive eyes. Antioxidant treatment also resulted in a prominent decrease in NF-κB activation in the ocular hypertensive retina and optic nerve. Although pharmacological treatment limiting the oxidative stress resulted in decreased neuroinflammation, ocular hypertension-induced neuroinflammatory responses were increased in SOD1(-/-) mice with defective antioxidant response. CONCLUSIONS These findings support the oxidative stress-related mechanisms of neuroinflammation and the potential of antioxidant treatment as an immunomodulation strategy for neuroprotection in glaucoma.
منابع مشابه
P116: The Relationship between Spinal Cord Injury and Neuroinflammation and Treatment Methods
Spinal cord injury (SCI) is usually caused by a physical factor, especially like burst fracture. Its primary phase involves displacement and physical accidents for the spinal cord, which have two factors of depth and speed of impact. In this phase, most damaged cells are oligodendrocytes in white matter. The secondary phase involves a cascade of cellular and molecular events that progresses rap...
متن کاملα-Lipoic Acid Antioxidant Treatment Limits Glaucoma-Related Retinal Ganglion Cell Death and Dysfunction
Oxidative stress has been implicated in neurodegenerative diseases, including glaucoma. However, due to the lack of clinically relevant models and expense of long-term testing, few studies have modeled antioxidant therapy for prevention of neurodegeneration. We investigated the contribution of oxidative stress to the pathogenesis of glaucoma in the DBA/2J mouse model of glaucoma. Similar to oth...
متن کاملO 20: The Role of Neuroinflammation in Epilepsy: A New Target for Treatment
Despite progress in pharmacological and surgical treatments of epilepsy, little is known about the processes that a healthy brain is rendered epileptic after seizure occurrence. Growing evidence supports the involvement of inflammatory processes, both the adaptive immunity and systemic inflammatory response, in induction of individual seizures as well as in the epileptogenesis. Clinical and exp...
متن کاملMelatonin in the eye: implications for glaucoma.
Melatonin synthesis occurs in the retina of most animals as well as in humans. Circadian oscillators that control retinal melatonin synthesis have been identified in the eyes of different animal species. The presence of melatonin receptors is demonstrable by immunocytochemical studies of ocular tissues. These receptors may have different functional roles in different parts of the eye. In view t...
متن کاملChanges in gene expression in experimental glaucoma and optic nerve transection: the equilibrium between protective and detrimental mechanisms.
PURPOSE The authors studied retinal gene expression changes in rats after experimental intraocular pressure elevation and optic nerve transection to elucidate molecular mechanisms of retinal ganglion cell (RGC) death. METHODS Translimbal laser photocoagulation was used to induce unilateral IOP elevation in 41 albino Wistar rats. In 38 additional animals, unilateral transection of the optic ne...
متن کامل